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BACKGROUND: Few population studies have reported on the long-term changes in the internal
cadmium dose and simultaneously occurring mortality.

OBJECTIVE: We monitored blood cadmium (BCd), 24-hr urinary cadmium (UCd), and mortality in
an environmentally exposed population.

METHODS: Starting from 1985, we followed BCd (until 2003), UCd (until 1996), and mortality
(until 2007) among 476 and 480 subjects, randomly recruited from low- exposure areas (LEA) and
high-exposure areas (HEA). The last cadmium-producing plant in the HEA closed in 2002.

RESULTS: From 1985-1989 to 1991-1996, BCd decreased by 40.3% and 18.9% in the LEA and
HEA, respectively (p < 0.0001 for between-area difference). From 1991-1996 until 2001-2003,
BCd remained unchanged in the HEA (+ 1.8%) and increased by 19.7% in the LEA (p < 0.0001).
Over the entire follow-up period, the annual decrease in BCd averaged 2.7% in the LEA (7 = 258)
and 1.8% in the HEA (7 = 203). From 1985-1989 to 1991-1996, UCd fell by 12.9% in the LEA
and by 16.6% in the HEA (p = 0.22), with mean annual decreases of 2.7% (7 = 366) and 3.4% (n =
364). Over 20.3 years (median), 206 deaths (21.5%) occurred. At baseline, BCd (14.6 vs. 10.2
nmol/L) and UCd (14.1 vs. 8.6 nmol/24-hr) were higher in deaths than in survivors. The risks (p <
0.04) associated with a doubling of baseline UCd were 20% and 44% for total and noncardiovascu-
lar mortality, and 25% and 33% for a doubling of BCd.

CONCLUSIONS: Even if zinc—cadmium smelters close, historical environmental contamination
remains a persistent source of exposure. Environmental exposure to cadmium increases total and

noncardiovascular mortality in a continuous fashion without threshold.
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Cadmium is a metal with high toxicity, has
an estimated elimination half-life of 10-30
years, and accumulates in the human body,
particularly in the liver and the kidney (Jirup
et al. 1983; Nordberg et al. 2007). Urinary
excretion of cadmium over 24 hr (UCd) is a
biomarker of lifetime exposure, whereas the
blood cadmium concentration (BCd) reflects
recent exposure over months (Nordberg et al.
2007). Exposure to cadmium occurs through
intake of contaminated food or water or by
inhalation of tobacco smoke or polluted air
(Hogervorst et al. 2007; Nordberg et al.
2007). Environmental exposure to cadmium
in northeastern Belgium, in the neighbor-
hood of zinc—cadmium smelters, has been
associated with a nearly 30% increased uri-
nary cadmium excretion (Sartor et al. 1992b),
renal dysfunction (Buchet et al. 1990;
Staessen et al. 1994), increased calciuria
(Staessen et al. 1991b), osteoporosis (Staessen
et al. 1999), a 35% population-attributable
risk of fractures (Staessen et al. 1999), and a
67% population-attributable risk of lung can-
cer (Nawrot et al. 2006).

Studies of Japanese populations living in
areas heavily polluted by cadmium have shown
that the cadmium-induced renal tubular injury

1620

(Arisawa et al. 2001, 2007a, 2007b; Nakagawa
et al. 2006; Nishijo et al. 2004, 2006; Uetani
et al. 2006), even in the presence of moderate
elevations of the urinary B,-microglobulin
excretion (300-1,000 pg/g creatinine),
adversely affected life prognosis. To our knowl-
edge, no cohort studies in a general population
have reported on long-term changes in the
body burden of cadmium and the simulta-
neous incidence of mortality. In our environ-
mentally exposed cohort, living in Belgium, we
monitored BCd from 1985 until 2003, uri-
nary cadmium from 1985 until 1996, and
mortality from 1985 to 2007. During this
period, cadmium emissions ceased, but the soil
remained contaminated with cadmium. Our
primary objective was to assess the association
between mortality and the internal dose of
cadmium. We also evaluated how attrition by
cadmium-related mortality (Arisawa et al.
2007b) might affect recent estimates of the
internal cadmium dose.

Materials and Methods

Study population. The Flemish partici-
pants enrolled in the Cadmium in Belgium
study (CadmiBel) were recruited from
September 1985 through December 1989

from northeastern Belgium (Noorderkempen).
This region has an area contaminated with
cadmium and a reference area with lower
exposure to cadmium (Figure 1). We selected
10 districts where we expected the mean con-
centration of cadmium in the soil to be more
than 3 mg/kg [high-exposure area (HEA)] as
opposed to < 1 mg/kg [low-exposure area
(LEA)] on the basis of a preliminary screen
done in 1983-1984 by the Research Institute
for Ecology and Forestry, Genk, Belgium.
The HEA of 300 km? has an estimated popu-
lation of 9,840, borders on three zinc—
cadmium smelters, and consists of six districts
of the municipalities Mol, Balen, Lommel,
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Overpelt, and Neerpelt (Figure 1). This area
remains polluted by cadmium, despite the dis-
mantlement of the smelter in Lommel in
1974, the transition from pyrolytic to elec-
trolytic zinc refining in Overpelt in the 1970s,
and a complete cessation of the cadmium pro-
duction in Overpelt in 1992 and in Balen in
2002. The reference area has 9,390 inhabi-
tants, is located > 10 km southeast of the
smelters, and includes four districts of the vil-
lages Hechtel and Eksel (Figure 1).

In every district, we identified a random
population sample stratified by sex and age
(20-39 years vs. 40-59 years vs. = 60 years),
with the aim of recruiting equal numbers in
each stratum. The municipalities gave listings
of all inhabitants sorted by address. House-
holds, defined as those who lived at the same
address, were the sampling unit. We numbered
households consecutively and generated a ran-
dom number list by use of a SAS random func-
tion (version 9.1.3; SAS Institute Inc., Cary,
NG, USA). Households with a number match-
ing the list were invited. Household members
> 20 years of age were eligible but were not
included if the quota of an age—sex stratum
had been met. Of 1,419 invited subjects,
1,107 participated (78.0%) (Figure 2). We
complied with all applicable requirements of
U.S. and international regulations, particularly
the Helsinki Declaration, for investigation of
human subjects. The Ethics Review Board of
the Medical Faculty of the University of
Leuven approved the study. Participants gave
informed consent at recruitment and renewed
consent at follow-up.

At baseline (1985-1989), every household
was repeatedly visited by the same study
nurse, who gave participants a self-adminis-
tered questionnaire and a container for urine
sampling. If needed, nurses assisted partici-
pants in completion of the questionnaire.
They instructed participants on how to
obtain 24-hr urine samples without external
contamination. The questionnaire inquired
about lifestyle, past and current residence,
possible exposure to cadmium at work, smok-
ing habits, and previous medical history. For
the present analysis, we classified subjects who
smoked at enrollment as smokers. One week
after the first home visit, nurses revisited the
homes to collect the questionnaire and the
24-hr urine samples and to obtain a sample of
venous blood. The nurses measured anthro-
pometric characteristics and obtained from
each subject five consecutive blood pressure
readings. They used the same procedures at
follow-up. For participants reporting possible
exposure to cadmium at work, the occupa-
tional-health physician of the company that
owned the plants gave details on their
employment history and their role in the pro-
duction process. In keeping with previous
publications (Nawrot et al. 2006), we
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excluded from our main analyses (Figure 2)
42 smelter workers with documented expo-
sure at work (3 in LEA vs. 39 in HEA) and
22 coal miners with documented pneumo-
coniosis (17 vs. 5).

The principal investigator (J.A.S.) coordi-
nated the administration of questionnaires and
wrote the manuals of operation, code books,
and SAS programs for compilation of the
coded data sheets. He developed the programs
to convert questionnaire replies and codes into
analyzable variables. Questionnaires were
coded by trained nurses. Technicians entered
the data into a SAS database. For quality
assurance, we randomly selected 10% of ques-
tionnaires coded by a nurse and had them
recoded by another nurse. We input all data
twice into the database by different techni-
cians. We compared duplicate data sets with
the PROC COMPARE application in the
SAS software to trace input errors. Data
coders and SAS programs checked internal
consistency of questionnaire replies. We coded
socioeconomic status (SES) according to the
methods of the U.K. Office of Population
Censuses and Surveys (1980) and condensed
it into a scale with scores ranging from 1 to 3
(Staessen et al. 1994, 1999).

Measurement of cadmium. Participants
collected urine samples obtained over 24 hr in

_ Lommel

Hechtel

a wide-neck polyethylene container. We meas-
ured BCd and UCd with an electrothermal
atomic absorption spectrometer fitted with a
stabilized-temperature-platform furnace and
Zeeman background correction. In an external
quality-control program completed by Trace
Element Control Scheme (organized by
Robens Institute, University of Surrey,
Guildford, UK), the accuracy of the cadmium
measurements did not differ significantly over
time (Claeys et al. 1992; Staessen et al. 2000).

Biochemical measurements. At baseline
(1985-1989), using methods described else-
where (Lauwerys et al. 1990), we measured
the serum concentration of creatinine (SCrt)
as index of glomerular renal function, the
serum levels of high-density lipoprotein
(HDL) and total cholesterol, the activity in
serum of y-glutamyltransferase as index of
alcohol intake, and the urinary excretion of
creatinine and retinol-binding protein (RBP)
as indicators of the completeness of the urine
collection and renal tubular function, respec-
tively. For statistical analysis, we set the uri-
nary measurements to missing if, according to
previously published criteria (Staessen et al.
1983), the 24-hr urine sample was incomplete
or overcollected.

Assessment of mortality. Via the National
Population Registry (Rijksregister) in Brussels,

Overpelt
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Figure 1. Geographic representation of UCd at baseline (1985-1989) and spatial analysis of mortality up to
30 September 2007, in participants 50-69 years of age at enrollment. Dots represent the homes of the
deceased participants. The diameters in the lower left diagram represent the number of participants per area.
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Belgium, we ascertained the vital status of all
participants until 30 September 2007. We
obtained the International Classification of
Diseases, 9th Revision (2007) codes for the
immediate and underlying causes of death from
the Flemish Registry of Death Certificates
(Brussels, Belgium). We checked diseases
reported on death certificates systematically
against records held by general practitioners,
hospitals, or both.

Spatial analyses. We located participants’
houses and zinc—cadmium smelters by use of
the global positioning system GPS Pathfinder
Pro XL (Trimble Navigation Europe, Hook,
Hampshire, UK). We converted degrees lon-
gitude and latitude (projection of the earth’s
curved surface onto a flat map by use of ellip-
soid WGS84) into kilometers by use of the
Lambert projection system of Belgian maps.

We used SAS/GRAPH mapping software and
the database of TeleAtlas (Gent, Belgium).
We calculated spatial summary statistics for
small geographic sectors (Figure 1), consisting
of one or two statistical units as defined by
the Belgium National Institute of Statistics.
Statistical methods. For database manage-
ment and statistical analyses, we used SAS
software, version 9.1.3 (SAS Institute Inc.).
We log-transformed non-normally distributed
data and report these results as geometric
mean and interquartile range (IQR). We
compared means using the large-sample
Z-test, medians using Mann—Whitney’s test,
and proportions using Fisher’s exact test. We
investigated associations between variables by
use of simple and multiple linear regression.
We applied Cox regression to model the rela-
tion between failure time (occurrence of fatal

Flemish CadmiBel arm
Invited: 1,419
Studied: 1,107 (78.0%)

BCd and UCd: 354

Excluded: LEA HEA Excluded:
Exposure at work: 20 n=543 n =564 Exposure at work: 44
No urine: 4 No urine: 14
No BLa:61 BCd or UCd: 476 BCd or UCd: 480 No BLa:20

’ BCd: 458 BCd: 466 .
uCd: 470 1985-1989 ucd: 474
BCd and UCd: 452 BCd and UCd: 460
Died: 13 Died: 12
No FU BCd or UCd: 53 No FU BCd or UCd: 53
BCd ocr UCd: 369 BCd ocr UCd: 367
BCd: 357 BCd: 354
UCd: 366 1991-199%6 UCd: 364

BCd and UCd: 351

HEHRHRE

events) and BCd and UCd, while adjusting
for significant covariables (sex, age, body
mass index) and lifestyle (smoking status,
Y-glutamyltransferase activity in serum as
index of alcohol intake) and SES. We checked
the proportional hazards assumption by the
Kolmogorov-type supremum test, as imple-
mented in the PROC PHREG procedure of
the SAS package, and by testing the inter-
action terms between follow-up duration and
the internal dose of cadmium. In stepwise
regression, we set p-values for variables to
enter and stay in the models at 0.15. Where
appropriate, we adjusted our analyses for extra
variables, such as sex, body mass index, sys-
tolic blood pressure, and the ratio of HDL to
total cholesterol in serum. All p-values were
for two-sided tests.

Results

Characteristics of subjects. At baseline
(1985-1989), 476 residents of the LEA and
480 subjects of the HEA had a measurement
of their BCd or UCd; 452 and 460 partici-
pants, respectively, had both measurements
(Figure 2). At baseline (1985-1989) and at
the first follow-up examination (1991-1996),
the characteristics of the residents of the dis-
tricts near the smelters did not differ from
those living in the LEA except for BCd, UCd,
and distance to the nearest smelter (Table 1).
The 24-hr urinary excretion of RBP at base-
line was significantly lower in the LEA com-
pared with that in the HEA (Table 1). At

Died: 62 < ; Died: 89 baseline, in the LEA, the number of partici-
_ _ pants with low, intermediate, or high SES was
BCd:258 2001-2003 BCd:203 355 (74.5%), 115 (24.2%), and 6 (1.3%),
Died: 18 <—| > Died: 12 respectively, whereas in the HEA, these num-
Aive: —L bers were 410 (85.4%), 69 (14.4%), and 1
ive: 383 30 Sep 2007 Alive: 367 .
Dead: 93 p Dead: 113 (0.2%). The p-value for the between-area dif-
ference in the distribution of SES was
Figure 2. Flow chart of the Flemish cohort from 1985-1989 until 2007. FU, follow-up. < 0.0001. In 2001-2003 (Table 1), the BCd
Table 1. Characteristics of subjects at three consecutive examinations.
1985-1989 1991-1996 2001-2003
Characteristic LEA HEA LEA HEA LEA HEA
No. 476 480 369 367 258 203
Women [no. (%)] 260 (54.6) 265 (55.1) 201 (54.5) 206 (56.1) 142 (55.3) 111(54.7)
Age [years (mean + SD)] 46.9+15.4 473+155 50.0 + 14.1 496+145 57.1+135 55.2+13.2
Body mass index [kg/m? (mean + SD)] 25.7+42 26.1+46 26.0+4.3 26.5+5.1 26.6+4.2 27.1+£51
Systolic pressure [nmHg (mean + SD)] 129 +18 128 +16 126 +18 129 +19 128 +18 127 £ 16
Diastolic pressure [nmHg (mean + SD)] 75+9 76+9 7810 79+ 77 £10 7710
Distance to nearest smelter [km; GM (IQR)] 10.8(9.1-12.7) 1.2(0.7-1.6)** 10.8(9.1-12.7) 1.1(0.7-1.6)** 10.7 (9.0-12.7) 1.2(0.7-1.6)**
Smokers [no. (%)) 177 (37.0) 186 (39.0) 110(29.8) 124 (33.8) 94 (36.4) 83 (40.9)**
Alcohol drinkers [no. (%] 80(17.4) 88(18.5) 76 (20.6) 71(19.4) 2(0.8) 0(0)
Serum total cholesterol [nmol/L (mean + SD)] 6.02+1.41 5.84+1.37 5.68+1.09 5.80+1.10 5.66 +0.99 5.39 + 0.98"
Serum HDL cholesterol [mmol/L (mean + SD)] 1.42 +0.43 1.13+0.36 1.33+0.37 1.29+0.36 1.46 +0.42 1.40+0.38
Serum creatinine [umol/L (mean + SD)] 98 +24 101 +18 92+ 21 89+18 88+17 90+17
Serum y-glutamyltransferase [U/L; GM (IQR)] 36 (22-48) 34.4 (22-48) 25 (15-35) 29(19-41) 21(14-28) 22 (15-29)
Serum ferritin [pmol/L; GM (IQR)] 234 (126—-444) 262 (141-510) — — — —
BCd [nmol/L; GM (IQR)] 10.6 (7.1-16.9) 11.5(6.8-19.6)* 6.3(4.4-10.7) 8.8 (5.3-16.0)** 7.4(5.1-11.1) 8.2(5.3-13.7)*
UCd [nmol/day; GM (IQR)] 7.7(5.4-11.9) 11.7 (6.8-19.5)* 6.7 (4.4-10.4) 9.1 (5.7-14.9)** — —
Urinary RBP [ug/day; GM (IQR)] 123 (84-173) 136 (94-196)** 68 (46-104) 73 (49-101) — —
Urinary creatinine [mmol/day (mean + SD)] 122+39 124+43 11.8+4.0 11.3+3.7 — —

Abbreviations: —, no data; GM, geometric mean. Serum ferritin was measured only at baseline. Participants did not collect a 24-hr urine sample in 2001-2003.
Significance of the difference between LEA and HEA: *0.10 < p < 0.05; **p < 0.05; #p < 0.01; #p < 0.001.
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still tended to be lower in the LEA than in the
HEA (7.4 vs. 8.2 nmol/L; p = 0.059).

Of 476 residents of the LEA and 480 sub-
jects of the HEA who had a measurement of
their BCd or UCd at baseline (1985-1989),
in each area, 53 did not undergo a follow-up
measurement of their internal dose of cad-
mium. Compared with participants who had
at least one such measurement during follow-
up, they had largely similar characteristics
(Table 2).

Cohort analyses of the internal dose of
cadmium. The cohort with BCd available at
three time points included 258 residents of
the LEA and 203 of the HEA (Figure 2).
Median follow-up from the first to the third
measurement of BCd amounted to 13.2 years
(IQR, 11.5-14.7; 5th-95th percentile inter-
val, 8.2-16.4 years) and 15.9 years (IQR,
9.8-16.8; 5th-95th percentile interval, 9.2—
17.8 years), respectively. Figure 3A illustrates
the geometric mean levels of BCd over time
by study area. On an individual basis, from
1985-1989 to 1991-1996, BCd decreased by
40.3% [95% confidence interval (CI), 36.3 to
44.9%; p < 0.0001] in the LEA and by
18.9% (95% CI, 14.7 to 22.9%; p < 0.0001)
in the HEA (p < 0.0001 for between-area dif-
ference). From 1991-1996 until 2001-2003,
BCd did not change in the HEA (+1.8%;
95% CI, —4.2 to 8.0%; p = 0.96) and
increased by 19.7% (95% CI, 13.2 to 26.6%;
2 < 0.0001) in the reference area (p < 0.0001
for between-area difference). Over the whole
follow-up period, the annual decrease in the
BCd averaged 2.7% (95% CI, 2.3 to 3.4%)
in the reference area and 1.8% (95% CI, 1.4
to 2.3%) in the contaminated area.

The cohort with measurements of UCd at
baseline (1985-1989) and follow-up
(1991-1996) consisted of 366 residents of the

Mortality

reference area and 364 of the area close to the
smelters. Median follow-up from the first to
the second measurement of UCd amounted
to 4.96 years (IQR, 4.63-6.00; 5th-95th per-
centile interval, 4.54-7.09 years) in the LEA
and to 5.24 years (IQR, 5.08-5.33; 5th-95th
percentile interval, 4.60-5.50 years) in the
HEA. Figure 3B gives the geometric mean lev-
els of the UCd over time by study area. On an
individual basis, the UCd fell from 1985-1989
to 1991-1996 by 12.9% (95% CI, 9.0 to
16.8%; p < 0.0001) in the LEA and by 16.6%
(95% CI, 12.3 to 20.7%; p < 0.0001) in the
HEA (p = 0.22 for between-area difference).
The annual decrease in the UCd averaged
2.7% (95% CI, 1.8 to 3.6%) in the reference

and changes in internal cadmium exposure

area and 3.4% (95% CI, 2.5 to 4.3%) in the
contaminated area.

Determinants of the internal dose at
Jfollow-up. Table 3 gives the determinants of
the BCd in 1991-1996 and in 2001-2003.
The internal dose of cadmium was not signifi-
cantly related to sex or body mass index. BCd
at follow-up increased with higher baseline
values (1985-1989), age, smoking, and
shorter distance to the nearest smelter. BCd at
follow-up was also inversely and indepen-
dently correlated with the serum ferritin con-
centration at baseline. In quantitative terms,
BCd at follow-up rose by approximately 52%
for a doubling of the cadmium level at base-
line (1985-1989), by approximately 12% for

= “
16 16
206 deaths
176 deaths
14 14
Area by exposure level =
=5 12 = 12
= o LEA S
=5 -
g HHEA | 5
= £
5 0 £ 0
*
(-] * 3
. >
o =203 o n=364
*
* n=258
n =366
6 6
4 4
T T T T T
1985-1989 1991-1996 2001-2003 1985-1989 1991-1996

Figure 3. BCd (A) and UCd (B) in the cohort analysis. The horizontal bar (deaths) indicates the geometric
mean (solid line) with 95% CI (dashed lines) of the internal dose in subjects who died before 30 September
2007 (significance of the difference with survivors, p < 0.0001).

*Significant difference between consecutive measurements.

Table 2. Baseline characteristics (1985-1989) of participants according to follow-up status at the end of follow-up (30 September 2007).

Alive with at least one follow-up

Alive without any follow-up measurement

measurement of the internal cadmium dose Deceased of the internal cadmium dose
Characteristic LEA HEA LEA HEA LEA HEA
No. 330 314 93 113 53 53
Women [no. (%]] 182 (50.7) 177 (56.4) 51 (54.8) 59(52.2) 27 (50.9) 29 (54.7)
Age [years (mean + SD)] 421+128 412+128 67.2+12.1% 66.0 + 12.3" 413+146 434+138
Body mass index [kg/m? (mean + SD)] 256+3.8 259+4.4 26.4+46 27.0+5.2* 25.0+4.4 254+143
Systolic pressure [nmHg (mean + SD)] 125+ 15 124 +14 144 + 20* 140 + 19 124 £ 15 129 £17
Diastolic pressure [nmHg (mean + SD)] 74+9 75+9 78+ 9 78 £ 107 73+8 78+ 11*#
Distance to nearest smelter [km; GM (IQR)] 10.7(9.0-12.7) 1.10(0.69-1.57)* 10.7 (9.0-12.5) 1.21(0.68—1.66)** 12.0(9.5-13.2) 1.18(0.69-1.87)*
Smokers [no. (%)] 127 (38.5) 126 (40.1) 31(33.3) 39(34.5) 19(35.9) 21(39.6)
Alcohol drinkers [no. (%)] 58(18.5) 57(18.4) 12(12.9) 20(17.9) 10(18.9) 11(20.8)
Serum total cholesterol [mmol/L (mean + SD)] 5.88+1.29 5.66 +1.30 6.52 + 1.66" 6.38 + 1.45" 595+ 1.42* 578+ 161
Serum HDL cholesterol [mmol/L (mean + SD)] 1.44 +0.43 1.15+0.34* 1.29+0.38 1.08+0.37* 1.54 +0.45 1.13+0.34*
Serum creatinine [umol/L (mean + SD)] 96+ 16 98+ 15 110 + 39* 109 + 23* 95+ 17 103+ 18
Serum y-glutamyltransferase [U/L; GM (IQR)] 32 (22-45) 31(19-45) 46 (2270 44 (26-54) 49(22-70) 35(22-51)
Serum ferritin [pmol/L; GM (IQR)] 213 (34-1,021) 236 (59-1,044) 341 (57-1,522) 368 (80-1,252) 205 (50-989) 249 (39-1,102)
BCd [nmol/L; GM (IQR)] 10.3(7.1-6.9) 10.2 (6.2-18.6) 13.0(8.9-7.8) 16.2(9.7-13.8)** 8.5(5.4-15.1) 11.1(5.3-19.6)
UCd [nmol/day; GM (IQR)] 7.4(25-11.3) 10.1(5.9-16.5)* 9.8(9.9-12.7¢ 18.9(11.7-29.8)** 6.9(4.7-11.0) 10.8(5.2-19.1)*
Urinary RBP [ug/day; GM (IQR)] 116 (83-163) 134 (98-188) 151 (85-220)* 142 (84-209) 124 (85-189) 133(92-212)
Urinary creatinine [mmol/day (mean + SD)] 12.7+39 129+ 4.1 10.0 £ 3.2* 10.7 + 4.4% 125+ 4.0 12.2+39
GM, geometric mean.
*Significantly different from LEA (p < 0.05). *Significantly different from participants followed up and alive on 30 September 2007 (p < 0.05).
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each 10-year increase in age at enrollment,
and by approximately 22% in smokers, but
decreased by approximately 16% for a dou-
bling in the distance to the nearest smelter,
and by approximately 8% for a 2-fold
increase in the serum ferritin concentration.
The determinants of UCd at follow-up
(1991-1996) were the same as for BCd.
Quantitatively, UCd at follow-up rose by
approximately 58% for a doubling of the
cadmium excretion at baseline (1985-1989),
by approximately 7% for each 10-year increase
in age, and by approximately 18% in smokers,
but it decreased by approximately 2% for a
doubling in the distance to the nearest smelter
and by approximately 3% for a 2-fold increase
in the baseline serum ferritin concentration.

In analyses limited to premenopausal
women, similarly adjusted as in Table 3 (exclud-
ing the sex term), the partial regression coeffi-
cients for serum ferritin were —0.114 + 0.047
log pmol/L (p = 0.015) and —0.159 + 0.042 log

pmol/L (p < 0.001) for BCd in 1991-1996 and
2001-2003, respectively, and —0.051 + 0.038
log pmol/L (p = 0.18) for UCd in 1991-1996.

Analysis of mortality. As shown by expo-
sure area in Table 2, subjects who died, com-
pared with survivors, had higher baseline values
of age (66.6 vs. 41.8 years; p = 0.0001), systolic
blood pressure (141.5 vs. 124.9 mmHg;
2 < 0.0001), diastolic blood pressure (78.2 vs.
74.7 mmHg; p = 0.0001), and serum total
cholesterol (6.44 vs. 5.78 mmol/L; p < 0.0001)
and lower serum HDL cholesterol (1.17 vs.
1.29 mmol/L; p < 0.0001). Subjects who died
had a higher BCd (7 = 195; 14.6 vs. 10.2
nmol/L; p < 0.0001 ) and a higher UCd (n =
201; 14.1 vs. 8.6 nmol/24-hr; p < 0.0001)
than those who survived until 30 September
2007. This was also the case (Figure 1) when
the analysis was limited to subjects 5069 years
of age at baseline (BCd: 7 = 75; 14.2 vs. 11.9
nmol/L; p = 0.037; UCd: = 81; 16.8 vs. 13.3
nmol/24-hr; p = 0.005).

Table 3. Internal dose of cadmium at follow-up predicted from characteristics at baseline (1985-1989).

Variable Log BCd (nmol/L) Log BCd (nmol/L) Log UCd (nmol/24 hr)
Follow-up period 1991-1996 2001-2003 1991-1996
No. of subjects analyzed ANl 461 730
Median follow-up [years (IQR)] 5.2 (4.8-5.5) 13.4(10.7-16.0) 5.2 (4.8-5.5)
R 0.61 0.58 0.63
Intercept (B + SE) 0.229 + 0.090* 0.448 + 0.093* 0.201 + 0.075%
Partial regression coefficients (3 + SE)

Being female (0,1) -0.0068 + 0.0188 0.0051 +0.0198 —0.0300 + 0.0160
Baseline (1985-1986) value (B + SE)

Log BCd (nmol/L) 0.681 +0.033# 0.540 + 0.034% —

Log UCd (nmol/day) — — 0.664 + 0.028%

Age (+10 years) 0.052 + 0.007# 0.044 +0.007% 0.031 + 0.006%*

Body mass index (+1 kg/m?) —0.0009 + 0.0020 —0.0016 + 0.0023 0.0019 +0.0017

Smoking (0,1) 0.086 + 0.021# 0.084 + 0.022% 0.073 +0.015%

Log serum ferritin (pmol/L) —0.110 + 0.024#* —0.111 £ 0.025** —0.040 + 0.020*

Log distance to nearest smelter (km) —0.144 + 0.016%* —0.069 + 0.016% —0.034 +0.014**

—, covariable not considered in the analysis. The dependent variable is the logarithmically transformed variable reflect-

ing the internal cadmium dose at follow-up.

Significance of the partial regression coefficients: *0.10 < p < 0.05; **p < 0.05; p < 0.01; #p < 0.001. Being female (0, 1) and
body mass index were not selected by stepwise regression (p > 0.22), but were forced into the models.

Table 4. BCd and UCd at baseline (1985-1989) as predictors of mortality in environmentally exposed subjects.

In all subjects with an assessment of the
internal dose of cadmium at baseline, median
follow-up of vital status amounted to 20.3
years (IQR, 18.8-20.8; 5th-95th percentile
interval, 4.9-21.9 years). Over this period, 206
deaths occurred (Table 4). The cause of death
was cardiovascular in 88, noncardiovascular in
96, suicidal or accidental in 5 subjects, and
unknown in 17 participants. Noncardio-
vascular mortality included 54 cancers (17 lung
cancers). With adjustments applied for sex,
age, body mass index, smoking, y-glutamyl-
transferase as index of alcohol intake, and SES,
the risk of all-cause and noncardiovascular
mortality and the risk of death from all cancers
and lung cancer increased with higher UCd.
The risk increments associated with a doubling
of UCd amounted to 20% and 44% for total
and noncardiovascular mortality, and to 43%
and 62% for total and lung cancer mortality
(Table 4). With similar adjustments applied,
the risk increments associated with a doubling
of the BCd were 25% and 33% for total and
noncardiovascular mortality (Table 4). The
interaction terms between sex and the internal
dose of cadmium did not reach statistical
significance (p > 0.27).

Figure 4 illustrates the 10-year risk of death
in relation to the BCd and UCd at baseline
with standardization to the distribution (mean
or ratio) of sex, age, body mass index, smoking,
Y-glutamyltransferase, and SES. We plotted the
risk functions for the 5th, 25th, 50th, 75th,
and 95th percentiles of the 24-hr urinary
excretion of RBP and the SCrt, as indicators of
tubular and glomerular renal function, respec-
tively. These analyses show continuous and sig-
nificantly positive associations between
all-cause mortality and the internal cadmium
dose (p< 0.03), whereas in the presence of cad-
mium the associations with the indexes of renal
function were not significant (p > 0.15).

Mortality statistics by area

Standardized rate

Hazard ratios (95% Cl) associated with a doubling of the internal

cadmium dose at baseline (1985-1989)?

Variable No. of deaths (%) (per 1,000 person-years) BCd p-Value UCd p-Value
Study area
Exposure level LEA HEA LEA HEA LEA and HEA LEA and HEA
No. of subjects 476 480 476 480 924 944
No. of deaths 93 113 93 113 195 201
Cause of death
Total 93(19.5) 113(23.5) 10.2 13.1 1.25(1.04-1.50) 0.017 1.20(1.04-1.39) 0.014
Cardiovascular 38(8.0) 50(10.4) 4.4 59 1.20(0.90-1.60) 0.21 1.07 (0.85-1.34) 0.56
Cardiac 23(4.8) 33(6.9) 26 39 1.19(0.84-1.71) 0.33 1.05(0.79-1.40) 0.73
Cerebrovascular 12(2.5) 9(1.9) 1.4 1.0 0.83(0.46-1.49) 0.52 0.70(0.59-0.98) 0.04
Noncardiovascular 42 (8.8) 54(11.3) 48 59 1.33(1.01-1.75) 0.04 1.44(1.16-1.79) 0.0009
Cancer 21(4.4) 33(6.9) 24 38 1.21(0.86-1.71) 0.27 1.43(1.08-1.89) 0.012
Lung 4(0.8) 13(2.7) 0.4 15 0.98 (0.55-1.79) 0.99 1.62 (1.02-2.55) 0.039
Gastrointestinal 7(1.5) 9(1.9) 0.8 1.1 1.23(0.66-2.32) 0.51 1.25(0.72-2.15) 0.43
Urogenital 4(0.8) 2(0.4) 05 0.2 1.04(0.37-2.90) 093 1.09 (0.42-2.83) 0.87
Other cancer 6(1.3) 9(1.9) 0.7 1.0 1.64(0.84-3.21) 0.15 1.69 (0.99-2.86) 0.053
Other noncardiovascular 21(4.4) 21(4.4) 23 22 1.57(1.01-2.44) 0.043 1.51(1.07-2.14) 0.02
Violent death 1(0.2) 4(0.8) 0.1 0.5 1.81(0.67-4.93) 0.24 2.65(1.12-6.27) 0.026

The cause of death could not be ascertained in 17 participants. Death rates were standardized for sex and age (20-39, 40-59, > 60 years) by the direct method.
3Hazard ratios and p-values were computed by Cox regression and were adjusted for sex, age, body mass index, smoking status, y-glutamyltransferase as index of alcohol intake, and SES.
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Sensitivity analyses of mortality in relation
to UCd at baseline produced results that were
not materially different from those in Table 4.
After additional adjustment for systolic blood
pressure and the ratio of HDL to total choles-
terol, the hazard ratios were 1.20 (95% CI,
1.03-1.39; p = 0.018) for total mortality; 1.06
(95% CI, 0.84-1.33; p = 0.65) for cardio-
vascular mortality; 1.41 (95% CI, 1.14-1.73;
» = 0.002) for noncardiovascular mortality;
145 (95% CI, 1.17-1.79; p = 0.0007) for all
cancers; and 1.60 (95% CI, 0.99-2.56;
2 =0.051) for lung cancer. After exclusion of
5 violent deaths and 17 deaths of unknown
cause, the adjusted hazard ratio for all-cause
mortality in relation to UCd was 1.19 (95%
CI, 1.01-1.37; p = 0.035). Analyses in which
we additionally included 42 smelter workers
were confirmatory (Table 5).

Figure 1 illustrates the spatial association
between all-cause mortality and the baseline
UCd in subjects who were 50—69 years of age
at enrollment (1985-1989). Mortality clus-
tered around the industrial settlements in
Lommel and Overpelt, and it was associated
with higher cadmium body burden. For con-
trasting subjects with a UCd < 15 nmol and
> 30 nmol (Figure 1), with adjustments
applied for sex, age, and smoking, the attrib-
utable (etiologic) fraction and the population-
attributable fraction of all-cause mortality
were 48.5% and 9.4%, respectively.

Discussion

The key finding of our study was that in exclu-
sively environmentally exposed subjects, the
internal dose of cadmium predicted total and
noncardiovascular mortality. As reported previ-
ously (Nawrot et al. 2006), UCd also predicted
lung cancer. These findings were consistent in
analyses also including 42 smelter workers.
Total mortality includes cardiovascular mor-
tality. Subclinical cardiovascular disease can
aggravate the course of noncardiovascular dis-
eases. This provided the rationale for running
Cox models additionally adjusted for cardio-
vascular risk factors, such as systolic blood
pressure and the ratio of HDL to total choles-
terol in serum. These more fully adjusted
models produced confirmatory results. To
focus on premature mortality, in our spatial
analyses we considered total mortality in rela-
tion to UCd in subjects 50-69 years of age at
enrollment. Mortality clustered around the
industrial settlements in Lommel and
Overpelt, and it was associated with higher
cadmium body burden.

Our present findings are in line with pre-
vious studies in Japanese populations, which
showed association between mortality and
environmental exposure to cadmium (Arisawa
et al. 2001, 2007a, 2007b; Nakagawa et al.
2006; Nishijo et al. 2004, 2006; Uetani et al.
2006). However, there are also important
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differences between our present results and
the observations in Japanese. First, the
median UCd level in Japanese was 7.0 pg/g
creatinine (Arisawa et al. 2007b), which prob-
ably explains the increased mortality from
nephritis and nephrosis (Nakagawa et al.
2006; Nishijo et al. 2006). By comparison, in
our study, the median UCd at baseline
(1985-1989) was 0.74 pg/g and 1.03 pg/g
creatinine, in the LEA and HEA districts,
respectively. In Swedish postmenopausal
women, the urinary concentration was 0.67
ng/g creatinine (Akesson et al. 2006). Second,
in the Japanese studies (Arisawa et al. 2001,
2007a, 2007b; Nakagawa et al. 2006; Nishijo
et al. 2004, 2006; Uetani et al. 2000), expo-
sure occurred mainly via consumption of con-
taminated rice and rice derivatives. In our
cohort, a 2-fold increase in the metal loading
rate in house dust was associated with

increases (p < 0.001) in BCd (+2.3%) and

316
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UCd (+3.0%), independent of the intake of
locally grown vegetables (Hogervorst et al.
2007). These findings highlight that in our
cohort, contaminated house dust was a persis-
tent source of exposure. Moreover, the emis-
sions from the zinc—cadmium smelters were
approximately 1,000 times higher in the
period 1950-1980 than in the 1990s
(Staessen et al. 1995). Inhalation of contami-
nated particulate matter, with the lungs being
both the route of entrance and the target
organ, explains why in contrast to the
Japanese studies (Arisawa et al. 2007a), we
found a positive and independent association
between the risk of lung cancer and lifetime
exposure, as reflected by UCd. Third, in the
Japanese studies, the mortality associated with
exposure was mainly cardiovascular with
greater risks of heart failure and cerebral
infarction (Nishijo et al. 2006). In our
cohort, the association of cardiovascular

4
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Figure 4. Ten-year risk of death in relation to the BCd (A and C) and UCd (B and D) at baseline with stan-
dardization to the distribution (mean or ratio) of sex, age, body mass index, smoking, y-glutamyltransferase
as index of alcohol intake, and SES: risk function for the 5th, 25th, 50th, 75th, and 95th percentiles of the
24-hr urinary excretion of RBP (A and B) and the SCrt (C and D). p-Values are for the independent effects
of cadmium (pgg), urinary RBP (pggp), and serum creatinine (pscy). The range of the internal cadmium dose
plotted along the horizontal axes corresponds with the 1st to 99th percentile of BCd and UCd.
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mortality with the internal cadmium dose was
nonsignificant. A 2-fold increase in UCd was
even associated with a 30-40% decrease in
cerebrovascular mortality. Blood pressure is
the most consistent and powerful predictor of
stroke (Zhang et al. 2006). We previously
demonstrated an inverse and independent
association between blood pressure and the
internal cadmium dose in men (Staessen et al.
1991a). Recently, we also noticed that a
higher cadmium body burden was associated
with lower pulse pressure throughout the
arterial system, lower aortic pulse wave veloc-
ity, and higher femoral distensibility (Schutte
et al. 2008). Finally, Japanese researchers
reported that cadmium exposure aggravated
mortality more in women than men (Nishijo
et al. 2004; Uetani et al. 2006), whereas in
our Cox models the interaction terms
between sex and the internal cadmium dose
did not reach significance for any mortality
end point.

Most Japanese studies used as biomarkers
of exposure either microproteinuria (Arisawa
et al. 2007b; Nishijo et al. 2004) or other
indexes of tubular renal dysfunction (Arisawa
et al. 2007a, 2007b; Nishijo et al. 2004, 2006),
which were analyzed as categorical variables.
Fewer Japanese studies presented the urinary
cadmium-to-creatinine ratio in categorical
analyses as biomarker of the internal cadmium
dose (Nakagawa et al. 2006). We analyzed
BCd and UCd as continuous variables. In Cox
models including the internal cadmium dose as
well as the 24-hr urinary excretion of RBP or
the SCrt as indexes of tubular and glomerular
renal function, respectively, only cadmium was
a significant predictor of mortality. These find-
ings suggest that the increased mortality was
directly related to the toxic effects of cadmium,
rather than being mediated by renal dysfunc-
tion, as suggested by the Japanese studies

(Arisawa et al. 2007a, 2007b; Nishijo et al.
2004, 20006).

From 1985-1989 until 1991-1996, the
BCd decreased on average by approximately
40% and 20% in the LEA and HEA, respec-
tively. Over the same interval, UCd decreased
by approximately 15%. Only 106 participants
(- 11.0%) had no follow-up measurement of
BCd or UCd. Nonparticipants had similar
characteristics as those with follow-up meas-
urements in 1991-1996 and/or 2001-2003.
Three mechanisms explain the observed
decline in the internal cadmium dose. First,
changes in the industrial activity certainly con-
tributed. In the study region, zinc smelters had
emitted cadmium into the atmosphere since
1888 (Staessen et al. 1994, 1995). In the
1970s, the zinc ovens were replaced by elec-
trolytic refining, such that the annual airborne
cadmium emissions dropped from 125,000 kg
in 1950 to 130 kg in 1989 (Staessen et al.
1995). In 1992, the primary zinc smelter in
Overpelt ceased activity (Buchet et al. 1996).
In Lommel and Overpelt, the daily cadmium
dustfall fell from 12 mg/m? in 1985 to < 0.01
mg/m? in 1994 (Staessen et al. 1995). Second,
the inhabitants of the contaminated area were
informed, for the first time in a systematic way
around 1995, how to reduce their environ-
mental exposure to cadmium by using tap
water instead of well water for drinking and
cooking, by liming the soil of their kitchen
gardens, and by not eating locally grown leafy
vegetables (Staessen et al. 1995). Third, at
baseline, deceased participants had substan-
tially higher BCd and UCd than those who
survived. As first suggested by Japanese studies
(Arisawa et al. 2007b), these findings under-
score that attrition of the original cohort by
cadmium-related mortality contributed to the
apparent decrease in the internal cadmium
dose in our cohort.

From 1991-1996 until 2001-2003, the
BCd did not show any further decrease in the
contaminated area. Cadmium emitted in the
past continues to contaminate the soil not
only in the HEA, but also in the nearby refer-
ence area. Polluted house dust is a persistent
source of exposure to cadmium (Hogervorst
et al. 2007; Kimbrough et al. 1994;
Paustenbach et al. 1997). In general, the con-
centrations of contaminants are greater in
house dust compared with exterior soil. For
instance, in a review of 15 studies, the median
of the concentration ratios of lead in house
dust versus external soil was 2.3 (Paustenbach
et al. 1997). Fine dust particles are mobile,
adhere easily to the skin (Kissel et al. 1996),
and enhance the bioavailability of the conta-
minants that they carry (Kissel et al. 1996;
Paustenbach et al. 1997). Preventive measures
that diminish exposure to house dust, such as
hand washing and dust control indoors, are
now being recommended in the polluted area,
but not in the LEA (Hogervorst et al. 2007).
Residents of the reference area perceive the
probability of exposure to cadmium as low
and are therefore less likely to implement pre-
ventive measures. Interestingly, residents of
the LEA had higher UCd than did inhabi-
tants of another cadmium-polluted area of
Belgium, the city of Li¢ge (Sartor et al.
1992a). A combination of these factors might
explain the approximately 20% increase in
the BCd in the LEA from 1991-1996 until
2001-2003.

In humans, after cessation of long-term
high exposure, the decrease in BCd displays a
slow component with a half-life of 7-16 years
and a fast component with a half-life of 3-4
months (Nordberg et al. 2007). The biologic
half-life of cadmium in the kidney is in the
order of 20 years (Nordberg et al. 2007). As
expected, the baseline levels of the biomarkers

Table 5. BCd and UCd at baseline (1985-1989) as predictors of mortality in environmentally exposed subjects and 42 smelter workers.

Mortality statistics by area

Hazard ratios (95% Cl) associated with a doubling of the internal

Standardized rate cadmium dose at baseline (1985-1989)¢

Variable No. of deaths (%) (per 1,000 person-years) BCd p-Value UCd p-Value
Study area
Exposure level LEA HEA LEA HEA LEA and HEA LEA and HEA
No. of subjects 479 519 479 519 964 986
No. of deaths 94 131 94 131 212 220
Cause of death
Total 94.(11.6) 131(25.2) 11.0 138 1.32(1.11-1.56) 0.001 1.22 (1.06-1.40) 0.006
Cardiovascular 38(7.9) 60(11.6) 45 6.3 1.29(0.99-1.67) 0.057 1.11(0.89-1.38) 0.34
Cardiac 23(4.8) 41(7.9) 2.7 43 1.31(0.95-1.81) 0.10 1.09 (0.83-1.43) 0.54
Cerebrovascular 12(2.5) 10(1.9) 1.4 1.0 0.85(0.49-1.47) 0.57 0.61(0.37-0.99) 0.05
Noncardiovascular 43(8.9) 61(11.6) 5.2 6.5 1.41(1.10-1.80) 0.007 1.43(1.17-1.76) 0.0007
Cancer 22 (4.6) 38(7.3) 25 4.0 1.27(0.92-1.74) 0.14 1.44(1.11-1.88) 0.007
Lung 4(0.8) 17(3.3) 0.4 1.8 1.11(0.66-1.85) 0.70 1.65(1.08-2.50) 0.019
Gastrointestinal 7(1.5) 10(1.9) 0.8 1.1 1.41(0.77-2.57) 0.27 1.33(0.79-2.26) 0.28
Urogenital 4(0.8) 2(0.4) 0.5 0.2 1.02 (0.37-2.84) 0.96 1.05(0.40-2.74) 0.92
QOther cancer 7(1.5) 9(1.7) 0.7 1.0 1.58(0.84-2.98) 0.16 1.57(0.93-2.64) 0.09
Other noncardiovascular 21(4.4) 23 (4.4) 24 2.0 1.65(1.11-2.45) 0.013 1.46 (1.04-2.04) 0.03
Violent death 1(0.2) 4(0.8) 0.1 05 1.75 (0.64-4.80) 0.27 2.64(1.06-6.56) 0.026

The cause of death could not be ascertained in 17 participants. Death rates were standardized for sex and age (20-39, 40-59, > 60 years) by the direct method.
aHazard ratios and p-values were computed by Cox regression and were adjusted for sex, age, body mass index, smoking, y-glutamyltransferase as index of alcohol intake, and SES.
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of cadmium exposure were the main determi-
nant of their value at follow-up. Throughout
follow-up, cadmium levels remained higher in
smokers and older subjects than in nonsmok-
ers and younger people. They decreased with
greater distance to the nearest smelter and
with higher body iron stores. Iron deficiency
stimulates the gastrointestinal absorption of
cadmium (Flanagan et al. 1978). Our find-
ings are in line with a study of nonsmoking
Swedish farmers (Olsson et al. 2002). Because
of iron deficiency, women had a 40% higher
BCd and a 60% higher urinary cadmium-to-
creatinine ratio than men. In our present
study, sensitivity analyses confined to pre-
menopausal women showed associations simi-
lar as in the whole study population between
the internal cadmium dose at follow-up and
the serum ferritin concentration at baseline.

The present study must be interpreted
within the context of its potential limitations
and strengths. First, there was substantial
overlap in the distributions of BCd and UCd
between the residents of the LEA and HEA.
This explains why the separation between the
two study areas in terms of mortality rates
appears smaller than expected. Epidemiologic
studies, using aggregate data, are prone to
ecologic biases (Jirup and Best 2003), while
attempting to deduce individual-level effects
from group-level data. Relating biomarkers of
effect and exposure at the individual level is
key to detect true associations (Hill 1965;
Jiarup and Best 2003). The relations we
observed here between mortality and internal
cadmium dose, based on individual data, sat-
isfy Hill’s criteria for causality (Hill 1965;
Nawrot et al. 2007). Second, we did not mea-
sure UCd in 2001-2003, because our envi-
ronmental research was not funded. In an
independent survey commissioned by the
Flemish government in 2007 (Wildemeersch
2008), the UCd standardized to mean age
(49.6 year) and the proportion of women
(51%) and smokers (18%) in the sample
(participation rate, 48%) averaged 0.45 pg/g
and 0.47 pg/g creatinine in the LEA and
HEA, respectively. The corresponding values
for the BCd were 4.45 nmol/L and 4.80
nmol/L. For comparison, our results for BCd
in 2001-2003, standardized as in the Flemish
survey (Wildemeersch 2008), were 6.2 and
6.9 nmol/L in the LEA and HEA, respec-
tively. These findings suggest a steady decrease
in the internal cadmium dose, albeit at a
much slower pace than from 1985-1989
until 1991-1996.

Our present findings might be relevant for
other contaminated areas. For instance, in the
United States, ecologic studies demonstrated
cadmium pollution not only close to industrial
settlements (Gale et al. 2004) or mines
(Peplow and Edmonds 2004), but also in agri-
cultural (Schmitt et al. 2006) and coastal

Mortality and changes in internal cadmium exposure

(Karouna-Renier et al. 2007) areas. Japanese
women remain currently more exposed
to cadmium than other rice-dependent popu-
lations in Asia (Watanabe et al. 2004).
Regulators have to realize that because of its
health effects (Buchet et al. 1990; Nawrot
et al. 2006; Staessen et al. 1991b, 1994,
1999) and its very long biologic half-life
(Nordberg et al. 2007), environmental expo-
sure to cadmium due to human activities is
unacceptable.

In conclusion, environmental exposure to
cadmium increases the risk of death. The haz-
ard function is continuous without a threshold
of the internal dose below which the risk
would disappear. Even if zinc—cadmium
smelters cease activity, historical environmen-
tal contamination remains a persistent source
of exposure. Attrition of cohorts by cadmium-
related mortality contributes to the apparent
improvement in the measured internal
cadmium dose.
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